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MATHEMATICAL MODELLING OF A HELICOPTER
ROTOR TRACK AND BALANCE: RESULTS
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A mathematical model of a helicopter rotor track and balance is used in order to study
optimal balancing and tracking, and their relationship. It is shown that perfect tracking
does not necessarily lead to optimal balancing. Furthermore, cases of perfect tracking, may
be accompanied by relatively high vibrations. Tracking or balancing at a certain air speed
may also be accompanied by relatively large vibrational loads at other air speeds. Thus,
it is recommended to perform simultaneous balancing at different air speeds. The present
investigation shows how the new model can be used for optimal balancing of helicopter
rotors.
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1. INTRODUCTION

In the companion paper [1], a mathematical model of a helicopter rotor track and balance
was presented. In this second paper the model will be used in order to investigate the
tracking and balancing procedures and the differences between them.

The present numerical investigation will be concentrated on a typical four-bladed rotor,
similar to that of the Apache AH-64. This rotor will be described in detail in section 2.
In this section, the correction parameters (see reference [1]) that are used in order to
minimize the influence of the natural (unintentional) non-uniformity will be presented.

In section 3, the various numerical aspects of the model will be presented and discussed.
Verification of the model is presented in section 4.

In section 5, the tracking or balancing results are presented. First, tracking or balancing
at a single air speed is described, and the behavior of the rotor at various air speeds is
examined. Then, simultaneous balancing at two air speeds is studied and the results are
compared with those for the same operation at a single air speed.

In section 6, the conclusions of the study are presented.

2. THE ROTOR MODEL

All of the numerical examples presented in what follows refer to a four-bladed
(b=4) rotor, similar to the Apache AH-64 rotor. The rotor has a radius of 7·76 m
and rotates at an angular speed of V=30 rad/s. The offset of the rotor is 5·7%. The
length of each blade is 7·32 m (see Figure 1), while the chord length is constant (along
the blade) and equals 0·53 m. There are two stations along the blade at which balance
weights can be added or subtracted, at distances of 0·63 m and 1·69 m from the root
(see Figure 1). The root point O, is attached at a distance of eR=0·44 m from the
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hub center. Each blade has four trailing edge tabs. The length of each tab is 0·59 m (8%
of the blade length), while the tab chord is 0·053 m (10% of the blade chord). The locations
of the tabs are shown in Figure 1.

The nominal blade mass is mN =76·1 kg. The nominal first mass moment about the
flapping hinge is KN =278·6 kg m. The nominal mass moment of inertia about the flapping
hinge is IN =1360 kg m2, while the nominal moment of inertia about the lead–lag hinge
is larger by 1·34 kg m2. The blade moment of inertia about the pitch axis is IP =1·34 kg m2.
The non-principal components of the baled moment of inertia are small and thus assumed
to be zero, except for Iyz (the blade co-ordinate system is used while calculating all these
parameters—see Figure 3 of reference [1]) which is equal to 0·28 kg m2. There is viscous
damping at the lead–lag hinge, with a damping coefficient of Cz =1000 N m/(rad/s).

It is assumed that the air density equals 1·225 kg/m3. A linear aerodynamic behavior of
each cross-section is assumed, having a uniform lift curve slope along the blade, that is
equal to 5·7 1/rad. The cross-sectional drag coefficient and moment coefficient are also
constant along the blade, and equal to 0·0194 and 0·004, respectively. There is a linear
pretwist along the blade (washout), with a total different of 9° between root and tip.

All of the above characteristics are the nominal ones. It is assumed that in the nominal
case all of the four root pitch angles of the various blades are identical, the tab deflections
are equal to zero, and the balance weights of all the blades are identical (the influences
of which are included in the above indicated nominal data).

In the present investigation, the non-uniformity of the blades is introduced by four
kinds of perturbations (that are referred to in reference [1] as ‘‘natural’’ perturbations),
about the nominal values: (a) non-uniformity of the pitch angle at the blade root
(relative to the nominal value), DuD

Rk (k=0, 1, 2, 3); (b) DuSk (k=0, . . . , 3) represent
variations in the magnitude of the total built in twist (relative to the nominal value of
9°); (c) DKk (k=0, . . . . , 3) are variations in the blade first mass moment, about
the flapping hinge; (d) DIk (k=0, . . . , 3) are variations in the blade mass moment of
inertia, about the flapping hinge. All these non-uniformities may be the result of
manufacturing inaccuracies or imperfections that have developed during operation of the
helicopter.

Figure 1. The geometry of the blade (all dimensions are in meters). Q, Balancing weight location.
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The vector of natural perturbations of the kth blade (see equation (4.1) of reference [1])
is then

dk = {DuD
Rk , DuSk , DKk , DIk}, (2.1)

The vector of natural perturbations of the entire rotor (see equation (4.11) of reference
[1]) is

d= {d0, d1, d2, d3}, (2.2)

where d is a vector of order 16.
The correction parameters of each blade include the following: (a) variation of the ptich

rod setting—this variation results in a variation of the pitch angle at the blade root, DuE
Rk ;

(b) variation of the angle of the trailing edge tab—djk is the angle of the jth tab of the kth
blade; the inner tab is the first one ( j=1), while the tab number increases outward
(1E jE 4); the tab angle is measured relative to the direction of the cross-sectional zero
lift line, and a positive angle indicates a downward deflection of the tab; (c) variation of
the balance weights—mnk is the variation in the mass of the balance weight that is located
at the nth balance weight station of the kth blade, and in the present case (see Figure 1),
n=1 or 2.

There are certain constraints imposed on the magnitude of the variations of the
correction parameters, as follows: (a) the variation in the length of the pitch link is limited
such that

−2°EDuE
Rk E 2°; (2.3)

(b) the bending of the trailing edge tabs is also limited, such that

−9°E djk E 9°; (2.4)

Usually tabs that are bent too much tend to ‘‘bend back’’ during operation, due to their
elasticity—the present analysis will not consider inaccuracies in the bending of the tabs,
and thus it will be assumed that accurate determination of djk is possible; (c) The magnitude
of the variations in the balance weights is also limited, such that

−1 kgEmnk E 1 kg; (2.5)

in practice, variations of mnk are not continuous and occur in steps—nevertheless, in the
present analysis a continuous variation is allowed.

The vector of correction parameters of the kth blade (see equation (4.2) of reference [1])
is

ek = {DuE
Rk , d1k , . . . , d4k , m1k , m2k}. (2.6)

The vector of correction of parameters of the entire rotor (see equation (4.12) of reference
[1]) is

e= {e0, e1, e2, e3}. (2.7)

3. THE NUMERICAL CALCULATIONS

As indicated by equation (5.8) of reference [1], the tracking problem is defined
mathematically by the equation

DbCT =Sb,Ee+ g. (3.1)
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g is a vector that describes the natural tracking error due to the blades’ non-uniformity.
e is the vector of correction parameters (see equation (2.7)), while Sb,E is the sensitivity
matrix of flapping, with respect to the correction parameters.

The purpose of the tracking procedure is to find vector e, which will result in the
minimum absolute value of the vector of the tracking errors, DbCT.

The vector g itself can be described in the following manner (see equation (5.9) of
reference [1]):

g=Sb,Dd−DbC
M . (3.2)

Vector DbC
M describes the average tracking error (relative to the nominal blade), while Sb,D

is the sensitivity matrix of flapping with respect to the natural perturbations.
The balancing problem is defined in a similar manner, as (see equation (5.10) of reference

[1]):

DlCH =SLCH,Ee+ h. (3.3)

Here h is the vector of natural oscillatory loads due to the blades’ natural non-uniformity,
which are transferred from the rotor to the hub. SLCH,E is the sensitivity matrix of the
oscillatory loads, with respect to the correction parameters. DlCH is the vector of residual
oscillatory loads. Optimal balancing is aimed at finding the vector e which will minimize
the absolute value of DlCH.

It is convenient to describe h as (see equation (5.11) of reference [1])

h=SLCH,Dd, (3.4)

where SLCH,D is the sensitivity matrix of the oscillatory loads, with respect to the natural
perturbations.

The four sensitivity matrices can be obtained by calculation, or on the basis of
experimental measurements. For the present investigation these matrices are obtained by
using a computer code that includes detailed rotor calculations, based on a blade-element
approach. Mechanical couplings or direct aerodynamic couplings between the blades, are
not taken into account. The present analysis includes only rigid motions of the blades and
does not include elastic deformations. As indicated in reference [1], if elastic deformations
are included, then DbCT refers to the tip path plane motion and reflects the resultant
influences of rigid body flapping and elastic deformations. If necessary, more sophisticated
aeroelastic comprehensive codes can be used to calculate the sensitivity matrix, including
more complicated aerodynamic models. However, the current state-of-the-art in prediction
of helicopter vibration is such that accurate results are in question. Therefore, it seems that
obtaining the sensitivity matrices from flight tests, where controlled ‘‘intentional’’ known
perturbations are introduced, is an attractive option.

The partial derivatives that define the elements of the matrices (see equations (4.6), (4.7),
(4.14) and (4.15) of reference [1]) are calculated numerically, about the nominal state
(d= {0}, e= {0}). The derivative of a certain variable f, with respect to xj , according to
the central difference scheme, is

0 1f
1xj1xjN

=
f(xjN + h/2)−f(xjN − h/2)

h
. (3.5)

All of the variables in the last equation obtain their nominal values, except for xj (its
nominal value is xjN).



  /:  609

The magnitude of h is very crucial to the accuracy of the derivative calculation. An
automatic test procedure of the convergence was used, in order to assure accurate
calculations of the derivatives.

It should be emphasized that the sensitivity matrices are functions of air speed, weight
and atmospheric conditions. The above-described procedure of calculating the sensitivity
matrices is general and can easily be applied by using any computer code for calculating
helicopter vibrations. Moreover, the same method of calculating the matrix elements can
be followed by using flight test results. In this case a known perturbation is introduced
before each flight and its influence on the vibrations is then measured.

4. VERIFICATION OF THE MODEL

Verification of the numerical model is based on introducing deterministic natural
perturbations, and then calculating the optimal correction parameters that are needed in
order to track or balance the rotor. The cases that will be described have solutions that
can be determined based on simple physical reasoning. Thus, the numerical results can be
verified.

4.1.   uD
Rk    

Pitch angle variations at the root of the blades are natural perturbations and also
correction parameters. Thus, if the perturbation is DuD

R0 =1°, then the optimal correction,
that will lead to perfect tracking (that is, performed relative to the average natural tracking
error), is DuE

R0 =−0·75° and DuE
R1 =DuE

R2 =DuE
R3 =0·25°. On the other hand, according to

the present definitions, the correction that will lead to perfect balance is DuE
R0 =−1° and

DuE
R2 =DuE

R3 =0°. The calculations gave the same results.

4.2.   Kk  Ik

It is always possible to find two balance weights, m1k and m2k , that cancel any pair of
natural perturbations DKk and DIk . The numerical model gave results identical to those
of direct calculations for these two masses.

4.3.       

If the natural perturbations in all the blades are identical, then the blades remain
identical. In such a case all the blades are in track and so tracking corrections are not
required. In the case of balancing, where the corrections try to make the blades as similar
as possible to the nominal one, the corrections in all the blades will be identical. The
calculated results confirm these logical predictions.

5. NUMERICAL RESULTS

5.1.         

Balancing or tracking takes place in a trimmed level flight. As indicated above, the
sensitivity matrices are functions of the air speed, helicopter weight (and c.g. location) and
atmospheric conditions. All the results presented here, are calculated for standard sea level
atomospheric conditions, at a rotor thrust of 65 000 N. The trim position was calculated
by using the method of reference [2], based on the Apache AH-64 data.
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T 1

The natural perturbations of the four blades

k=0 k=1 k=2 k=3

DuD
Rk (degrees) 0·285 −1·415 1·344 −1·380

DuSk (degrees) −0·645 0·0765 0·422 −0·320
DKk (kg m) −0·062 −0·146 −0·030 0·194
DIk (kg m2) 0·786 0·030 0·078 0·160

Instead of referring to an air speed, we will refer to its non-dimensional equivalent, the
advance ratio, m, where

m2 air speed/(tip speed). (5.1)

The natural non-uniformity of the rotor is defined by the vector d (see equation (2.2)).
In the present case the terms of this vector have been determined by using a random
procedure, while taking care that the elements stay within reasonable limits. The vectors
dk of all of the blades, used in all the following examples, are presented in Table 1.

The investigation starts by balancing or tracking the rotor at a single air speed.
If balancing is considered, then mB indicates the advance ratio at which this balancing

takes place, Thus, the vector of correction parameters e, that minimizes the absolute value
of DlCH at the advance ratio mB is calculated. In order to check how vector e affects the
vibrational loads or tracking at an advance ratio mF , equation (3.1) or (3.3) is used, where
the sensitivity matrices are calculated at mF . If mF = mB , then the optimal case is considered.
Nevertheless, it is very important and interesting to investigate cases in which mF $ mB .

If tracking is considered, then mT defines the advance ratio at which vector e minimizes
tha aboslute value of DbCT. Again, one should be interested in checking how vector e affects
the vibrational loads or tracking at an advance ratio mF .

In order to present a measure of the intensity of the vibrational forces, associated with
certain harmonic, a norm of the loads at frequency iV, DFH,i, is defined as follows (see
equations (3.7) and (3.10) of reference [1]):

DFH,i =[(DFHiS
x )2+(DFHiC

x )2+(DFHiS
y )2+(DFHiC

y )2+(DFHiS
z )2+(DFHiC

z )2]1/2. (5.2)

In similar manner, in order to measure the intensity of the vibrational moments, a moment
norm, DMH,i, is defined:

DMH,i =[(DMHiS
x )2+(DMHiC

x )2+(DMHiS
y )2+(DMHiC

y )2]1/2. (5.3)

The index i in equations (5.2) and (5.3) takes on (in general) the values i=1, . . . , 5. The
zeroth component (i=0) does not affect the vibrations and thus is of no interest here.

In order to assess the tracking quality at frequency iV, the norm Dbi is defined:

Dbi =6 s
b−1

k=0 $(DbCT,iS
k )2+(DbCT,iC

k )2%7
1/2

. (5.4)

DbCT,iS
k and DbCT,iC

k are the elements of the vector DbCT
k , that refer to the sine and cosine

components, respectively, of the ith harmonic of the flapping of the kth blade. In equation
(5.4), i takes on values between zero and five. According to the present definitions, in the
case of tracking, the components i=0 are also important.

The above discussion dealt with balancing or tracking at a certain advance ratio, as well
as measuring its effects at various advance ratios. Since the present formulation is based
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on a least squares approach, that deals with overdetermined systems of equations,
extension of the balancing or tracking procedure to multiple air speeds is straightforward.
It leads to a simultaneous solution of the balancing or tracking equations at various air
speeds (see examples below).

5.2.       

In this section balance versus tracking, at a single air speed, will be investigated. The
natural perturbations are those that are presented in Table 1.

In order to allow some insight into the problem, a relatively simple case will be studied.
The correction parameters in the examples presented are confined to three for each blade:
(a) the pitch and angle at the root, DuE

Rk ; (b) the deflection angle of tab number 4, d4k ; (c)
the balancing weight at station number 1, m1k . Thus, the correction vector of the rotor
(b=4), e, is of order 12.

The calculations show that the vibrations (because of non-uniformity), at frequencies
4V and 5V, are very small and thus can be neglected. The present investigation will be
concentrated on the low frequencies (V, 2V, 3V). Vibrations at these frequencies are solely
due to non-uniformity and do not appear in the case of a four-bladed rotor with uniform
blades. After neglecting the higher frequencies, the problem of balancing at a single air
speed, is associated with 35 equations (three force components and two moment
components—for each one there is a constant term and three sine and cosine harmonics).
With 12 variables (the dimension of vector e), an overdetermined system is obtained.

5.2.1. Balancing or tracking at hover (mB = mT =0)
At first, balancing or tracking at hover are considered, namely mB = mT =0. The vectors

e for balancing or tracking are presented in the first and fourth columns of Table 2,
respectively.

In Figures 2(a)–(c), the influence of balancing or tracking at hover, on the behavior at
hover (mF =0) is presented. The norms Dbi before and after balancing or tracking, are
presented in Figure 2(a): (a) OR refers to the original case of natural perturbations, when
e= {0}; (b) AB indicates results after balancing; (c) AT indicates results after tracking.

T 2

The correction parameters of balancing or tracking

mB mT

ZXXXXXXXXCXXXXXXXXV ZXXXXXCXXXXXV
{E} 0 0·25 0, 0·25 0 0·25

DuE
R0(degrees) −0·56 −0·54 −0·54 −0·83 −0·82

d40(degrees) −2·95 −3·10 −3·10 −2·02 −2·13
m10(g) 70 397 314 135 −400

DuE
R1(degrees) 1·45 1·45 1·45 1·21 1·21

d41(degrees) 0·38 0·26 0·26 0·76 0·79
m11(g) 255 416 333 197 391

DuE
R2(degrees) −1·17 −1·18 −1·17 −1·40 −1·40

d43(degrees) 1·96 2·07 1·99 2·19 2·28
m12(g) 31 330 259 −11 520

DuE
R3(degrees) 1·25 1·25 1·25 1·0 1·0

d43(degrees) −1·49 −1·46 −1·52 −0·94 −0·94
m13(g) −284 149 −221 −321 −511
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Figure 2. Balancing or tracking at hover (mB = mT =0). (a) Tracking norms at hover (mF =0); (b) force norms
at hover (mF =0); (c) moment norms at hover (mF =0). OR, original; AB, after balancing; AT, after tracking.

Since the differences in the levels of the norms range over a few orders of magnitude, a
half logarithmic scale is used.

It can be seen that there is a relatively large flapping deviation at the basic state (OR),
of the order of 2·5°. Tracking leads to a (practically) zero tracking error. Balancing (AB)
leaves a very small tracking error (less than 0·01°) that is practically negligible. With the
present equipment, the ground crew can detect tracking errors of the order of a few
hundredths of a degree.

The force norms of the various harmonics, DFH,i, are presented in Figure 2(b). The
original state presents a fairly large amplitude, close to 3000 N. Balancing practically
cancels the vibrational forces due to non-uniformity. Tracking, on the other hand, that
leads to a zero tracking error, leaves vibrational forces having an amplitude close to 100 N.
This means a significant reduction in the vibrations, relative to the original state, but still
much larger vibrations than those that are obtained after balancing.

The vibrational moments, presented in Figure 2(c), exhibit a behavior that is similar to
that of the forces in Figure 2(b).

In Figures 3(a)–(c) the tracking and load norms are presented for forward flight
(mF =0·25), after balancing or tracking at hover (mB = mT =0). As expected, in forward
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flight there are original vibrations at all the frequencies, unlike the case of hovering, in
which the tracking errors included only zero frequencies and the load norms included only
the first harmonic.

The tracking errors are presented in Figure 3(a). The amplitude of the norms of the
original zero and first harmonics, are of the same order of magnitude as in hover, but the
amplitudes decrease at higher frequencies. Tracking results in a zero tracking error, while
balancing leaves a negligible tracking error at zero frequency.

The force norms are shown in Figure 3(b). Balancing in hover results in small vibrational
forces (05 N) at a frequency of V, while tracking in hover results in a larger force
norm (0100 N at that frequency). The same behavior is also shown at a frequency of
2V, but the amplitude of the norms decreases and so does the difference between
them. The force norms at a frequency of 3V are the smallest, with the force norm after
balancing somewhat larger than that after tracking. This behavior at a frequency of 3V,
does not change the observation that balancing results in smaller vibrations than
does tracking, since the vibrations at 3V are much weaker than the vibrations at V and
2V.

Figure 3. Balancing or tracking at hover (mB = mT =0). (a) Tracking norms at forward flight (mF =0·25); (b) force
norms at forward flight (mF =0·25); (c) moment norms at forward flight (mF =0·25). OR, original; AB after

balancing; AT, after tracking.
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Figure 4. Balancing or tracking at forward flight (mB = mT =0.25). (a) Tracking norms at forward flight
(mF =0·25); (b) force norms at forward flight (mF =0·25); (c) moment norms at forward flight (mF =0·25). OR,

original; AB after balancing; AT, after tracking.

The results for the moment norms are shown in Figure 3(c). The trends are similar to
those of the force norms, except for the fact that relative differences between the norms
(after balancing or tracking) are smaller.

5.2.2 Balancing or tracking at forward flight (mB = mT =0·25)
The influences of balancing or tracking at forward flight (mF =0·25), are presented in

Figures 4(a)–(c). The vectors e for balancing and tracking are presented in the second and
fifth columns of Table 2, respectively. In Figure 4(a) it is shown again that tracking results
in a zero tracking error at the same air speed, while balancing leaves a very small tracking
error. The difference between balancing and tracking, when it comes to the vibrational
loads, is presented very clearly in Figure 4(b). In the case of the first frequency, V, the
norm of the force after tracking is larger by almost three orders of magnitude compared
to the force norm after balancing (900 N as compared to 2 N). It is shown that perfect
tracking will still leave place for significant vibrations of the fuselage (00·01 g). In the case
of the moment norms, the trend is similar to that of the force norms, but the differences
between the results after balancing or tracking are much smaller.
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The influences of balancing or tracking at forward flight (mB = mT =0·25), on the
tracking errors or vibrations at hover, are shown in Figures 5(a)–(c). It is shown that
tracking at forward flight also results in perfect tracking at hover (Figure 5(a)), but it is
accompanied by large vibrational forces (Figure 5(b)), having a norm of 900 N. This force
norm is larger by two orders of magnitude than the force norm that is obtained in hover,
after balancing in forward flight. At first sight it may seem that the moment norms
(Figure 5(c)) exhibit an opposite trend, with the moment norm after balancing somewhat
larger than the one after tracking. This ‘‘opposite trend’’ is understandable, if one recalls
that balancing means finding the minimum absolute value of the loads vector (see equation
(3.3)), which includes both force and moment components. Since the weights of all the
components are identical, the importance of the moment components, relative to the force
components, is small, since the force components are larger. If necessary, different weights
can be given to different equations.

Figure 5. Balancing or tracking at forward flight (mB = mT =0·25). (a) Tracking norms at hover (mF =0); (b) force
norms at hover (mF =0); (c) moment norms at hover (mF =0). OR, original; AB after balancing; AT, after

tracking.
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5.2.3. Summary of results for balancing or tracking at a single air speed
The investigation presented above was also repeated for another random set of natural

perturbations. Results and trends identical to those presented above were observed. On
the basis of all of the results, the following conclusions can be drawn.

(a) In all of the cases investigated, tracking in hover or forward flight resulted in a
decrease in the magnitude of the vibrational loads. Nevertheless, the magnitude of the
vibrational loads after tracking was higher, sometimes significantly, than the same loads
after balancing.

(b) In Figure 3(b) it is shown that tracking in hover results in force norms of the order
of 100 N at a frequency of V, in forward flight. In Figure 4(b) it is shown that tracking
in the same forward flight results in much higher force norms (800 N for frequency V).
The force and moment norms at the other frequencies show a similar trend, while
comparing both cases. It should be noted that tracking in hover also results in perfect
tracking in forward flight. Thus, it turns out that two perfect tracking procedures lead to
two significantly different levels of vibrations, at the same air speed.

(c) Examination of the results in Table 2 indicates that the correction of the root pitch
angle DuE

Rk and the deflection of the tab d4k , for any k, are almost identical as a result of
balancing at hover or forward flight. The same also applies for tracking. The relative
differences in these parameters, as a result of balancing (or tracking) at two different air
speeds, usually do not exceed 4% in the case of DuE

Rk , and 10% in the case of d4k . On the
other hand, the differences in the balance weights m1k that are obtained for different air
speeds are very large, and usually reach 100%. Thus, it can be concluded that variations
in DuE

Rk and d4k are very effective and can be considered as the basic corrections of
the non-uniformity. The balance weights are used for ‘‘secondary’’ fine tuning. This fine
tuning (by m1k) exhibits the major differences between balancing or tracking at various air
speeds.

5.3.     -

Usually, a helicopter operator is interested in balancing his rotor over a wide range of
air speeds. The results of the previous section indicate that optimal balancing at a certain
airspeed is not necessarily optimal at a different air speed. This raises the importance of
simultaneous balancing at multiple air speeds. As explained previously, the present
mathematical model, based on using a least squares method, allows easy extension of the
model to include balancing or tracking at different air speeds. It simply results in an
increase in the number of equations, without changing the dimensions of vectors d and
e. By changing the weights of the equations at various air speeds, the relative importance
of various air speeds can be varied.

As indicated above, in the present investigation the fourth and fifth harmonics are
ignored. Thus, while balancing at a single air speed means a system of 35 equations,
balancing at two different air speeds means the least squares solution of 70 equations. The
number of correction parameters remains 12. The two advance ratios at which balancing
will be carried out simultaneously are mB =0 and 0·25 (the same advance ratios that were
investigated in the previous sections). The vibrational loads and tracking errors will also
be presented at these two advance ratios (mF =0, mF =0·25).

The correction parameters for balancing are presented in the third column of Table 2.
In Figure 6(a) and (b) the force and moment norms, respectively, of the various

harmonics at hover (mF =0) are presented. The original norm is compared with balancing
at hover only (a, mB =0), balancing at forward flight (b, mB =0·25) and balancing at these
two air speeds simultaneously (c, mB =0, 0·25). Naturally, the best balancing (practically
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Figure 6. Combined balancing at two air speeds (mB =0, 0·25). (a) Force norms at hover (mF =0); (b) moment
norms at hover (mF =0). OR, original; a, mB =0; b, mB =0·25; c, mB =0, 0·25.

perfect) is obtained in the case of balancing at hover only. Small vibrational loads are
obtained in cases b and c, having similar norms, with slightly higher value for b.

The force and moment norms in forward flight are presented in Figures 7(a) and (b),
respectively. As expected, the best results are obtained when balancing is performed at
the same air speed, in case b. Similar to the trends in Figures 6(a) and (b), balancing at
the two air speeds c gives slightly higher vibrational loads. The strongest vibrations are
obtained in the case of balancing at hover a.

In order quantitatively to compare the three balancing schemes, other norms of the
vibrational loads, which sum up the contributions of the various harmonics, are defined:

DF� NR =$s
3

i=1

(DFH,i)2%
1/2

, DM� NR =$s
3

i=1

(DMH,i)2%
1/2

. (5.5, 5.6)

The values for the present case are shown in Table 3.
It is shown in Figures 6 and 7, and in Table 3, that dual balancing presents a

‘‘compromise’’ between the separate balancings at mB =0 or mB =0·25. Since the vibrations
at forward flight are higher than the vibrations at hover, the results of the dual balancing
mB =0, 0·25 resemble much more the results of mB =0·25.

The tracking errors of the three balancing procedures are shown in Figure 8(a) for hover,
and in Figure 8(b) for forward flight. All the procedures lead to very small tracking errors
(less than 0·05°).

T 3

A comparison between the resultant norms of the vibrational forces and moments at hover
and forward flight, for various balancing procedures

mF = 0 0·25
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

mB = 0 0·25 0, 0·25 0 0·25 0, 0·25

DF� NR(N) 0 1·39 1·25 5·92 2·44 3·10
DM� NR(N m) 0 13·80 8·07 19·40 10·30 12·20
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Figure 7. Combined balancing at two air speeds (mB =0, 0·25). (a) Force norms at forward flight (mF =0·25);
(b) moment norms at forward flight (mF =0·25). OR, original; a, mB =0; b, mB =0·25; c, mB =0, 0·25.

Results for simultaneous balancing at three advance ratios (mB =0, 0·2, 0·3) were
obtained and studied, but are not presented here. The results were similar to those for dual
balancing. The important conclusions are as follows:

(a) In all of the advance ratios that were examined (mF), balancing at multiple air speeds
never led to maximum vibrations at any of these air speeds. Maximum vibrations always
occur in the case of balancing at a single advance ratio, which differs significantly from
mF .

(b) The correction parameters of balancing at various air speeds are always closer to
a single air speed balancing at higher speeds, because the vibrations increase as the forward
speed increases.

Figure 8. Combined balancing at two air-speeds (mB =0, 0·25). (a) Tracking norms at hover (mF =0); (b) tracking
norms at forward flight (mF =0·25).



  /:  619

6. CONCLUSIONS

A mathematical model of balancing and tracking, has been used in this paper in order
to study the success of these two procedures in decreasing the effects of non-uniformity
between the helicopter rotor blades.

It has been shown that tracking leads to negligible tracking errors, in hover or in forward
flight, while it also reduces the magnitude of the vibrational loads that are transferred from
the rotor to the fuselage. Nevertheless, the magnitude of the vibrational loads after
tracking is usually higher—sometimes significantly higher—than the loads that are
transferred from the rotor to the hub after balancing.

The results indicate that ‘‘perfect’’ tracking may be obtained by using various
combinations of correction parameters. However, while there are negligible differences
between the tracking errors in these cases, they may be associated with relatively large
differences in the vibrational loads that are transferred from the rotor to the helicopter
fuselage.

The vibrational loads or tracking errors may be very sensitve to certain correction
parameters. This means that small variations of these correction parameters have relatively
large influences. It is shown that the variations in the values of these parameters, as
obtained while balancing or tracking at different air speeds, are relatively small. On the
other hand, if correction parameters that are less effective are considered, they may show
relatively large differences in their values, which are obtained during balancing or tracking
at different air speeds. It seems as if the more effective correction parameters are used for
a coarse tuning, while the less effective ones are used for the fine tuning.

Usually, a helicopter operator is interested in balancing his rotor over a wide range of
air speeds. The present least squares approach can be extended very easily to address cases
of simultaneous balancing (or tracking) at multiple air speeds. In the present paper, results
for balancing at dual air speeds are presented. The investigation also included results for
three air speeds (that are not presented here, but showed similar trends).

The results indicated that simultaneous balancing at various air speeds results in a
certain ‘‘averaging’’ between the correction parameters that are obtained after ‘‘individual’’
balancing at each of these air speeds. The results of balancing at various air speeds never
gave the highest vibrations in any of those air speeds. The maximum vibrations are
obtained when using the optimal balancing correction parameters at another (significantly
different) air speed.

If the weights of the equations of balancing at different air speeds are identical, then
the correction parameters that are obtained from ‘‘multiple’’ air speed balancing are closer
to the results that are obtained from balancing at a single high air speed. This trend is
due to the fact that the amplitude of the vibrational forces due to non-uniformity increases
as the air speed is increased.

The important conclusion is that in order to optimize the rotor tuning, balancing should
be preferred to tracking. In order to perform correct balancing, one should use the
sensitivity matrices that were defined in this research. The sensitivity matrices should be
known for different combinations of weights, atmospheric conditions and air speeds. The
present least squares approach is very useful and convenient, since it allows simultaneous
balancing (and also tracking) at different air speeds.

The theoretical model that was used in the present analysis in order to calculate the
sensitivity matrices is relatively simple. It does not include elastic deformations and the
aerodynamic model is fairly simple. However, this model was sufficient in order to carry
out the investigation and present the comparison between balancing and tracking. If
necessary, more sophisticated comprehensive aeroelastic models can be used. In such a
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case, instead of flapping, the tip path plane should be considered, including the coupled
influences of rigid flapping and elastic deformations. Furthermore, the current
state-of-the-art in helicopter vibration prediction is often not sufficiently accurate.
Therefore, it may be preferable to obtain the sensitivity matrices from flight tests, where
known perturbations can be introduced in order to define the elements of the sensitivity
matrices, at various flight conditions.
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